SYNTHESIS OF COUMARANS FROM ALKENYLPHENOLS

V. I. Isagulyants, * V. R. Melikyan, E. M. L'vova, A. U. Stepanyants, and V. P. Lezina

UDC 547.728.1:543.422.6

A number of substituted coumarans, the structures of which were confirmed by UV and PMR spectroscopy, were synthesized by the reaction of phenols with 4-vinyl-1-cyclohexene in the presence of KU-2 cation-exchange resin.

The cyclization of o-alkenylphenols to chromans and coumarans is one of the simple methods for the synthesis of compounds of this class [1]. We have synthesized a number of substituted coumarans that have not been described in the literature by reaction of phenols with 4-vinyl-1-cyclohexene in the presence of KU-2 cation-exchange resin.

$$\begin{array}{c} OH \\ R \\ R' \end{array} + \begin{array}{c} H^{+} \\ R' \end{array} \begin{array}{c} OH \\ R' \end{array} \begin{array}{c} C_{2}H_{5} \\ R'' \end{array} \begin{array}{c} R \\ C_{2}H_{5} \end{array}$$

The structure of the compounds was confirmed by means of UV and PMR spectroscopy. The UV spectrum contains maxima at 285-289 nm (log ϵ 3.45-3.47), which is characteristic for the spectra of coumarans [2]. The PMR spectral data are presented in Table 1.

TABLE 1. Chemical Shifts in the PMR Spectra of Coumarans

nd n	Subst	ituent	s	Chemical shifts, δ, ppm						
Com- pound	R	R'	R''	CH	СН₂, СН	CH ₃ C(CH ₃) ₃		CH ₂ - CH ₂ -	C ₆ H ₅	
I	Н	Н	H	2,88 m •	1,02-2,20	-	-	0,85 t J=7.5Hz	6,35—7,00 m	
11	CH ₃	H	H	2,89 m	1,10-1,94	2,07 s		0,90 t	6,20—6,90 m	
111	Н	CH ₃	H	2,89 m	1,18-2,00	2,18 s	-	0,92 t	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
IV	Н	H	СН₃	2,83 m	1,001,90	2,10 s	-	0,84 t	6.69 q 6.59 d J = 2.0 Hz 6.58 d = 2.0 Hz	
V	H	H	C(CH ₃) ₃	2,83 m	1,10—1,90		1,20 s	0,86 t	6,92 q 6,79 d <i>J</i> = 2,5 Hz 6,54 d <i>J</i> = 8,5 Hz	
VI	C(CH ₃) ₃	Н	CH ₃	2,89 m	1.182,00	2,14 s	1,29 s	0,93 t	J = 2.0 Hz	

^{*}The abbreviations used here and subsequently are as follows: s is singlet, d is doublet, t is triplet, q is quartet, and m is multiplet.

© 1975 Plenum Publishing Corporation, 227 West 17th Street, New York, N.Y. 10011. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, microfilming, recording or otherwise, without written permission of the publisher. A copy of this article is available from the publisher for \$15.00.

^{*}Deceased.

I. M. Gubkin Moscow Institute of the Petrochemical and Gas Industry. Translated from Khimiya Geterotsiklicheskikh Soedinenii, No. 5, pp. 591-592, May, 1974. Original article submitted April 11, 1973.

TABLE 2. Properties of Coumarans

Com- pound	bp, °C	d4 ²⁰	n _D ²⁰	MR _D		Emperi-	Found, %		Calc., %		Yield.
	(mm)			found	calc.	cal for- mula	С	н	С	н	% Tield,
II III IV V VI	120 (2) 123 (2) 124 (2) 146 (2) 135 (2)	1,0306 1,0324 1,0130	1,5381 1,5401 1,5412 1,5288 1,5313	78,00	65,11 65,11 65,11 77,82 83,58	$C_{15}H_{20}O$ $C_{15}H_{20}O$ $C_{15}H_{20}O$ $C_{18}H_{26}O$ $C_{19}H_{28}O$	83,1 82,9 83,1 83,9 83,5	9,3 9,3 9,2 9,9 10,9	83,3 83,3 83,3 83,8 83,8	9,3 9,3 9,3 10,1 10,3	33 68 89 66 30

EXPERIMENTAL

The PMR spectra of CCl₄ solutions were recorded with a JNM-C60-HL spectrometer at 60 MHz with hexamethyldisiloxane (HMDS) as the internal standard. The UV spectra of CCl₄ solutions were recorded with a Hitachi recording spectrophotometer.

2-Ethyl-2,3,4,5,11,12-hexahydrodibenzofuran (I). A 5.4-g (0.05 mole) sample of 4-vinyl-1-cyclohexene was added dropwise with stirring at 127-128° to a mixture of 9.4 g (0.1 mole) of phenol and 3 g of KU-2 cation-exchange resin, after which the mixture was held at the same temperature for 2 h. The catalyst was separated, and the reaction products were dissolved in sulfuric acid. The sulfuric acid solution was treated with a Claisen solution to remove neutral compounds from the acidic compounds. The ether layer was neutralized, dried, and distilled to give 3 g (30%) of I with bp 120° (2 mm), d_4^{20} 1.0452, and n_D^{20} 1.5443. Found %: C 83.1; H 8.8; M 201; MR_D 60.99. $C_{14}H_{18}O$. Calculated %: C 83.2; H 8.9; M 202; MR_D 60.50.

Compounds II-VI were similarly obtained (Table 2).

LITERATURE CITED

- 1. E. A. Viktorova, N. I. Shuikin, and B. G. Bubnova, Zh. Obshch. Khim., 31, 479 (1961).
- 2. D. Gagniant and P. Gagniant, Bull. Soc. Chim. France, 838 (1957).